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Within the framework of the method of electron-density functionals, the influence of the dielectric medium on
the interphase energy of alkaline-metal threads has been studied. It is shown that the interphase energy in-
creases with decrease in the thread radius.

Thermodynamic analysis of interphase phenomena at a thin metal thread–dielectric medium interface has been
carried out in [1–4]. Here, in order to evaluate the interphase energy, one applied, as a rule, the Gibbs–Tolman–
Ko

..
nig–Baff equation obtained for free spherical drops and not for threads and containing no characteristics of the di-

electric medium. At the same time, knowledge of the interphase characteristics at the thin metal thread–dielectric
medium interface is needed for designing capillary energy-storage devices, capillary electric motors [3, 4], and tunnel
and atomic-force microscopes and for developing new composite materials produced by the method of impregnation [5,
6] and the technology of production of nanowires [7].

We are familiar only with one work ([8]) where in the stabilized-jelly approximation the surface energy is
evaluated for cylindrical nanothreads of elementary Al, Na, and Cs metals at T = 0 K. It is shown that the mean values
of the surface energy increase with decrease in the thread radius R, while for R < (9–10)a0 they oscillate. However, in
[8], the influence of the dielectric medium on the surface energy has not been studied.

In the present work, within the framework of the method of electron-density functionals, we study the influ-
ence of the dielectric medium with a permittivity ε on the interphase energy of alkaline-metal threads.

Usually, in simulating metallic systems, when the jelly approximation is used, no account is taken of the re-
laxation and reconstruction of a surface, which are considerable in ionic and semiconductor crystals. In the case of
metals, as is shown in [9], account for the relaxation leads to an insignificant decrease in the surface energy for close-
packed faces and to a maximum decrease of 3–7% in the surface energy for the loosest faces. Therefore, the density
of the positive charge inside the thread can be assigned in the form of the step function n+(r):

n+ (r) = 




n0 ,

0 ,
     

0 < r < R0 ,

r > R0 .
(1)

We assign the electron-charge distribution in the thread by the trial function

n− (r) = n0 




1 − exp (− βRG) cosh βr ,

sinh βRG exp (− βr) ,
     

r < RG ,

r > RG .
 (2)

in which β and RG are found from the condition of conservation of the thread charge:

2πqsR0 + πn0R0
2
 = πn0RG

2
 + 

2πn0

β2
 [1 − exp (− βRG)] . (3)

The electrostatic-potential distribution in the thread is determined from a Poisson equation written in a cylin-
drical coordinate system with account for the boundary conditions ϕ′(0) = ϕ′(∞) = 0 and the continuity conditions ϕ(r)
and ϕ′(r) at the interface r = R0:
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 = − 

4π [n− (r) − n+ (r)

εθ (r − R0) + θ (R0 − r)
 . (4)

From Eq. (4) with Eqs. (1) and (2) taken into account we obtain the following expressions for the electro-
static potential distribution at the thread–dielectric medium interface:

for RG < R0

ϕ (r) = 
4πn0

β2  












exp (− βRG) (cosh βr − I1 (r)) + C11 ,

− sinh βRG exp (− βr) + (βr)2 ⁄ 4 − β2
 (qsR0

 ⁄ n0 + R0
2 ⁄ 2) ln βr + C21 ,

− sinh βRG exp (− βr) ⁄ ε ,

     

0 < r < RG ,

RG < r < R0

R0 < r ;

 , (5)

for RG > R0

ϕ (r) = 
4πn0

β2  












exp (− βRG) (cosh βr − I1 (r)) + C12 ,

[exp (− βRG) cosh βr − (βr)2
 + (1 + 0.5 (βRG)2) ln βr] ⁄ ε + C22 ,

− sinh βRG exp (− βr) ⁄ ε ,

     

0 < r < R0 ,

R0 < r < RG

RG < r ,

 ,

(6)

where

I1 (r) =  ∑ 

k=1

∞

 
(βr)2k

(2k)⋅(2k) !
 ;   I2 (r) =  ∑ 

k=1

∞

 
(− βr)k

k⋅k !
 ; (7)

C1k = I1 (RG) − 1 + (βRG)2 ⁄ 4 − (β2
qsR0 + 0.5 (βR0)

2) ln βRG + C2 ,  k = 1, 2 ;

C21 = sinh βRG exp (− βR0) (1 − 1 ⁄ ε) − (βR0)2 ⁄ 4 + (β2
qsR0

 ⁄ n0 + 0.5 (βR0)2) ln βR0 ;

C22 = − 
1

ε
 + 

1

ε
 exp (− βRG) I1 (RG) + 

(βRG)2

4ε
 − 

1

ε
 (exp (− βRG) cosh βRG + 0.5 (βRG)2) ln βRG .

(8)

The interphase energy with account for Eqs. (1) and (2) in the homogeneous-background approximation can
be calculated by using the known relation [10] written in cylindrical coordinates:

σj (β, ε) = 
1

2R0
 ∫ 
0

∞

ϕ (r) [n− (r) − n+ (r)] rdr + 
1
R0

 ∫ 
0

∞



w [n− (r), ε] − w [n+ (r), ε]



 rdr , (9)

where

w [n (r), ε] = 0.3 (3π2)2 ⁄ 3 n
5 ⁄ 3 (r) + 

1

72
 
 ∇ n (r) 2

n (r)
 − 0.75 



3

π




1 ⁄ 3
 n

4 ⁄ 3 (r) −

−  0.056 
n

4 ⁄ 3 (r)

0.079 + n
1 ⁄ 3 (r)

 + Cex (rc) 
∇ n (r) 2

n
4 ⁄ 3 (r)

 . (10)

As an example, we present the results of calculations of the surface energy for threads made of pure Na, K,

and Cs with qs = 0 and ε = 1 and of the interphase energy at the thread–dielectric medium interface with ε = 1.9 and

81: a) at fixed values of the thread radius R0 and at assigned values of ε the values of β changed from 0.4 to 1.4
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with a step of 0.01; b) from the array of data on interphase energy we selected the smallest value of σj = min
β

  σj(β)

(these values of σj and β were taken to be true); c) similarly we found the values of σj for the new radius R0, etc.

The accuracy of calculation of σj was 0.1 mJ/m2.

The values of β corresponding to the minimum of the interphase energy and the values of RG identical to
them for the Na and K threads are given in Table 1, from which it is evident that the Gibbs coordinate RG is less
than R0.

The results of calculations of σj are presented in Fig. 1 and in Tables 2 and 3.
For the sodium threads of dimension R0 ≥ (13–15)a0 our data are about 20 mJ/m2 higher than the data of [8];

here the surface energy of the threads increases with decrease in R0.
The dimensional dependences σj(R0) given in Fig. 1 are satisfactorily approximated by the formula

σj
 ⁄ σ∞ = exp (2δ ⁄ R0) . (11)

The coefficients σ∞ and δ in formula (11) found by the method of least squares and the correlation coeffi-
cients k close to 1 are contained in Table 2.

The dimensional dependences σj(R0) are also satisfactorily approximated by the polynomials

σj
 ⁄ σ∞ = 1 + a ⁄ R0 + b ⁄ R0

2
 . (12)

As is seen from Table 3, for R0 > 10a0 in formula (12) the third term can be neglected, which gives the Tol-
man-type formula σj

 ⁄ σ∞ = 1 + 2δ ⁄ R0, where δ C a ⁄ 2. In [3], it is noted that for many metals the values of δ change
from 0.2 to 0.3 A° ; in this case their range is (0.32–0.40)a0 or (0.17–0.21) A° , which is close to that of [3] in order of
magnitude. From Tables 2 and 3 and Fig. 1 it is evident that the dielectric medium leads to a decrease in the surface

TABLE 1. Values of the Variational Parameters β and RG for Sodium and Potassium at the Interface with the Dielectric
Medium (ε = 81) 

Sodium Potassium

R0, AU RG, AU βmin, AU.–1 R0, AU. RG, AU βmin, AU.–1

10.82 10.71 0.94 13.48 13.39 0.92

11.50 11.40 0.95 14.32 14.24 0.93

12.39 12.30 0.95 15.43 15.35 0.93

13.16 13.08 0.95 16.40 16.32 0.93

13.63 13.55 0.96 16.98 16.91 0.94

14.07 13.99 0.95 17.53 17.46 0.93

14.68 14.61 0.96 18.29 18.23 0.94

15.25 15.18 0.95 19.00 18.94 0.94

15.60 15.53 0.95 19.44 19.38 0.94

15.94 15.87 0.95 19.86 19.80 0.94

16.43 16.36 0.95 20.46 20.41 0.94

16.88 16.82 0.96 21.03 20.98 0.94

17.17 17.11 0.95 21.40 21.34 0.93

17.46 17.40 0.97 21.75 21.69 0.93

17.86 17.80 0.96 22.25 22.20 0.93

18.25 18.19 0.96 22.74 22.69 0.93

18.50 18.44 0.96 23.05 23.00 0.95

21.18 21.13 0.96 26.38 26.34 0.96

23.31 23.26 0.96 29.04 29.00 0.96
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energy of the nanowires and the greater, the higher the values of the permittivity of the medium ε. Just as in [3], the
evaluations obtained by us point to the growth in the interphase energy with decrease in the thread radius. The similar
dimensional dependence does not contradict the results of certain works in which the surface energy for free liquid
spherical drops decreases with decrease in their radius [11], since in this case one evaluates the free surface energy
f = σ − TSω at T ≠ 0 K and not the surface energy σ. In this connection, the behavior of the dimensional dependence
f(R0) can change because of the dimensional dependence of the surface entropy Sω(R0). The results of [12] also point
to the difference in the dimensional dependences of the surface tension for solid and liquid drops.

NOTATION

σ∞, surface energy of the macroscopic metal, mJ/m2; σj, surface energy of the metal thread, mJ/m2; a0, Bohr
radius; R0, thread radius, AU of the length or Bohr radii; ε, permittivity of the medium; n+(r), function characterizing
the density distribution of the positive charge; r, coordinate perpendicular to the thread axis; n0, density of the positive
thread charge; rc, radius of the Wigner–Seitz cell; n−(r), function characterizing the electron-charge distribution; β,
variational parameter minimizing the interphase energy, AU−1; RG, radius of the Gibbs separating surface, AU of the
length or Bohr radii; θ, Heaviside function; qs, surface density of the charge at the thread–dielectric medium interface,

TABLE 2. Values of the Coefficients σ∞ and δ in Eq. (11)

Metal ε σ∞, mJ/m2 δ, AU k

Sodium
1.9 200 0.3886 0.9979

81 191 0.3994 0.9983

Potassium
1.9 123 0.3547 0.9977

81 121 0.3456 0.9975

Cesium
1.9 89 0.3262 0.9918

81 88 0.3180 0.9940

TABLE 3. Values of the Coefficients of the Approximation Polynomials in Eq. (12)

Metal ε σ∞, mJ/m2 a, AU b, AU2 k

Sodium
1.9 199 0.9643 -1.2910 0.9988

81 191 0.8925 -0.4746 0.9985

Potassium
1.9 123 0.8085 -0.8071 0.9980

81 121 0.7660 -0.5603 0.9977

Cesium
1.9 89 0.3689 3.6806 0.9950

81 88 0.4306 2.7153 0.9958

Fig. 1. Dependence of the surface energy σj on the thread dimension: 1) so-
dium–vacuum; 2) sodium in benzene; 3) sodium in water; 4) potassium–vac-
uum; 5) potassium in benzene; 6) potassium in water. σj, mJ/m2; R0, AU.
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C/m2; w[n(r), ε], density of the energy of the inhomogeneous electron gas involving the kinetic and exchange-correla-
tion energies with gradient corrections; δ, Tolman constant analog, AU of the length or angstroms; f, free surface en-
ergy, mJ/m2; Sω, surface entropy of the medium; ϕ(r), function characterizing the electrostatic-potential distribution at
the thread–dielectric medium interface; a and b, coefficients in the approximation polynomial; Cex(rc) = 2.702–1.74rc,
coefficient in the correction to the exchange-correlation interaction taken in the Heldart–Razolt approximation. Sub-
scripts: s, surface; min, minimum; j, jelly; ex, exchange-correlation interaction; G, Gibbs surface radius; c, cell.
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